Graficador de funciones

Supongamos que deseamos graficar la siguiente función (polinomio):

Los pasos a seguir, son:
1. Usar el widget Wolfram Alpha que ves abajo.
2. Ingresamos en la caja de texto la función, usando la sintáxis informatica  (por ejemplo x^3-6x^2+4x+12 ), y le damos enter.
3. Wolfram Alpha retornará una ventana de respuesta.
4. Podemos especificar el dominio de la función, añadiendo la clausula:  from “valor” to “valor”,  entonces lo que  debemos escribir en la caja de texto queda como:  x^3-6x^2+4x+12  from 0 to 5

Estudio y representación de funciones (con el uso de la derivada)

estudio_funciones

En el planteamiento de problemas típicos es frecuente manejar funciones matemáticas que describen los fenómenos y que conviene optimizar. Para ello se procede comúnmente al estudio (ver tabla resumen) de los puntos singulares de la función y al análisis de sus tendencias dentro de un marco concreto de valores.

Para estudiar una función:

  • Lo primero que suele hacerse es determinar su dominio de definición, esto es, el conjunto de valores de la variable para los cuales la función toma valor real.
  • Seguidamente se procede a estudiar la posible existencia de simetrías y periodicidades en la función, y se determinan los puntos de corte de la misma con los ejes, así como las asíntotas.
  • Otro aspecto importante en el estudio de una función consiste en analizar sus tendencias de crecimiento o decrecimiento y extremos relativos. Y por último se estudiará la curvatura (concavidad-convexidad) de la función y sus puntos de inflexión.
  • Una vez realizado este estudio preliminar, pasaremos a realizar una tabla resumen de puntos de la función y finalmente la gráfica de la misma.

Te presentamos ejemplos de un estudio completo de una función.  Los casos más frecuentes y sencillos son los que tratan sobre funciones polinómicas y racionales. No obstante, en los enlaces de abajo puedes analizar otro tipo de funciones: irracionales, logarítmicas, exponenciales, trigonométricas, etc.

importante_2

web

pdf_boton_p

video-icon

web

  • Estudio y representación gráfica de todo tipo de funciones

1.   Representación gráfica de funciones

2.   Representación de funciones polinómicas

3.   Representación de funciones racionales

4.   Representación de funciones irracionales

5.   Representación de funciones exponenciales

6.   Representación de funciones logarítmicas

7.   Representación de funciones trigonométricas

  • Ejercicios y problemas

1.   Representación de funciones polinómicas

2.   Representación de funciones racionales I

3.   Representación de funciones racionales II

4.   Representación de funciones irracionales

5.   Representación de funciones exponenciales

6.   Representación de funciones logarítmicas

7.   Representación de funciones trigonométricas I

8.   Representación de funciones trigonométricas II

9.   Representación de funciones con valor absoluto

10.   Representación de funciones a trozos

Aplicaciones de la derivada

aplic_derivadaUtilizando el concepto de derivada vamos a estudiar algunas propiedades de carácter local de las funciones. El estudio de estas características nos facilitará la representación gráfica de las mismas.

Se trata de obtener información de las funciones a partir de su derivada. Te recomendamos este resumen teórico muy claro y bien estructurado para ayudarte a conseguirlo.

OBJETIVOS

  • Calcular intervalos de crecimiento y decrecimiento
  • Calcular los extremos relativos de una función.
  • Aplicar la teoría de extremos relativos a problemas de optimización.
  • Calcular los intervalos de concavidad y convexidad y los puntos de inflexión de una función.

Si deseas profundizar en más ejercicios de cierto nivel a cerca de las aplicaciones de la derivada te proponemos dirigirte aquí.

Por otra parte, no debemos dejar a un lado los problemas de optimización de funciones que tantos dolores de cabeza pueden darnos en clase.

Estos problemas, basicamente aplicados en el área de la Física, de los materiales, de la Biología, de la economia, etc. Los casos más frecuentes son aplicaciones geométricas: por ejemplo, tratar de hallar las dimensiones de un terreno u objeto de una determinada forma (cuadrado, rectangular, circunferencia, ..) para que el gasto de material empleado para construir el objeto sea mínimo o para que el área del objeto/terreno.. sea el máximo. Puedes econtrar algunos ejemplos aquí.

Si te gustan los audiovisuales puedes encontrar unos buenos videos sobre aplicaciones de la derivada aquí.

No lo olvides, los métodos matemáticos resultan efectivos en el estudio de problemas en Física, Química, Biología, Medicina, Ciencias Sociales, Administración, Ingeniería, Economía, Finanzas y Ecología entre otras.

pdf_boton_p+ INFO (RECURSOS de DERIVADAS y APLICACIONES)

pdf_boton_p+ INFO (EJERCICIOS de DERIVADAS y APLICACIONES)

Representación de funciones con Google

Google love Maths !!!

Analizamos una nueva posibilidad del buscador Google.

En esta ocasión se aplica al área de matemáticas, y lo vamos a utilizar para representar gráficamente una función de una sola variable. Sí, para representar una función bastará escribirla en la caja de texto de búsqueda de Google, y la gráfica interactiva de la misma aparecerá en una caja como primer resultado de la búsqueda. Así de sencillo.

supercalc

Llegados a este punto, parece conveniente recordar cómo se escriben algunas funciónes:

  • Las potencias se escriben en el símbolo ^: Por ejemplo x^3 representa x3
  • Las raíces las escribiremos como es habitual sqrt: Por ejemplo sqrt(x) representa
  • Las funciones trigonométricas se escriben de forma habitual en inglés
  • También admite logaritmos
  • Y las constantes, simplemente las deletramos, por ejemplo hemos de escribir pi para el número

En el blog oficial de Google leemos un artículo dedicado a los amantes de las Matemáticas.

En este artículo, el autor nos explica cómo recuerda cuando un amigo le enseñó una calculadora gráfica en el colegio con la que podía representar cualquier función, mientras él seguía haciéndolo con lápiz y papel

Por ello, introduce la funcionalidad gráfica en Google, ahora podemos representar gráficamente cualquier función matemática, simplemente escribiéndola en el buscador. Prueba a escribir estas funciones una a una o en grupo, copiando este texto y pegándolo en el recuadro del buscador (la tercera  es la función más divertida):

  • x^3-3x+2
  • 2cos(x-1)
  • x/2, (x/2)^2, ln(x), cos(pi*x/5)
  • (sqrt(cos(x))*cos(200x)+sqrt(abs(x))-0.7)*(4-x*x)^0.01, sqrt(9-x^2), -sqrt(9-x^2) from -4.5 to 4.5

Calculadora de derivadas

Supongamos que deseamos derivar la siguiente función (polinomio):

Los pasos a seguir, son:
1. Usar el widget Wolfram Alpha que ves abajo.
2. Elegimos el tipo de derivada que nos interesa calcular (la primera derivada, la segunda derivada, etc).
3. Ingresamos en la caja la función, usando la sintáxis informatica  (por ejemplo x^4-x^2 ), y le damos enter.
4. Wolfram Alpha retornará una ventana de respuesta.

El reto de la Derivada

NI MÁS NI MENOS QUE UN COCIENTE INCREMENTAL

Deriving

¿Quieres dominar una de las operaciones clave de las Matemáticas?, pues ¡¡¡ ADELANTE !!!

web

  • Cómo calcular la derivada en un punto (ejercicios de aplicación de la definición) aquí
  • Presentación (PDF) sobre la derivada aquí
  • Interpretaciones geométrica y física de la derivada aquí
  • Reglas de derivación (PDF) con derivadas inmediatas aquí
  • Iniciación (PDF) al cálculo de derivadas sencillas aquí
  • Derivadas propuestas (HTML) (nivel medio) aquí
  • Batería de derivadas (PDF) con sus soluciones aquí
  • Ejemplos de derivadas (PDF) de funciones clasificadas por grupos aquí
  • Colección ejercicios resueltos (PDF) de derivadas y algunas aplicaciones aquí
  • Ejercicios resueltos (PDF) de derivabilidad (nivel medio-alto) aquí
  • Ejercicios resueltos (PDF) de aplicación de la derivada aquí
  • Web especializada en derivadas aquí
  • Videos explicativos (YOUTUBE) sobre la derivada aquí
  • Una derivada curiosa aquí

video-icon

Leer más de esta entrada

Asíntota, una palabra griega

Kobe_port_tower

Torre del puerto de Kobe (Japón)

Asíntota es un término con origen en un vocablo griego hace referencia a algo que no tiene coincidencia. El concepto se utiliza en el ámbito de la geometríapara nombrar a una recta  que, si se prolonga de maner indefinida, tiende a acercarse a una cierta curva o función, aunque sin alcanzar a tocarla.

Esto quiere decir que, mientras la recta y la curva van extendiéndose, la distancia entre ambas tenderá hacia el cero. De acuerdo a sus características, las asíntotas pueden clasificarse en verticales, horizontales u oblicuas.

Las asíntotas ayudan a la representación de curvas, proporcionan un soporte estructural e indican su comportamiento a largo plazo.

En este video puedes repasar como se hallan las asíntotas de una función racional con una profesora virtual:

  • Resumen teórico de ASINTOTAS aquí
  • Enunciados de ejercicios de ASÍNTOTAS aquí
  • Soluciones de los ejercicios de ASÍNTOTAS aquí
  • Otro video sobre ASÍNTOTAS aquí

pdf_boton_p+ INFO (EJERCICIOS de ASÍNTOTAS)

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.