Función cuadrática

parabola

Una función cuadrática es aquella que puede escribirse de la forma: f(x) = ax2 + bx + c

donde a, b y c son números reales cualesquiera y a distinto de cero.

Si representamos “todos” los puntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola.

Para repasar los fundamentos de la función cuadrática te proponemos estos enlaces:

Las parábolas pueden tener traslaciones y dilataciones según modifiquemos la expresión analítica de la función.

recomendado

Función lineal e interpolación lineal

funcion_afin

En primer lugar te proponemos un enlace para repasar estos contenidos básicos:

  1. La función lineal (de proporcionalidad directa): recta que pasa por el origen.
  2. La función afín: cualquier recta oblicua.
  3. La función constante: recta horizontal.

Con estos conocimientos previos puedes abordar la INTERPOLACIÓN LINEAL.

Interpolacion_lineal_3La interpolación consiste en hallar un dato dentro de un intervalo en el que conocemos los valores en los extremos. Si se supone que las variaciones son proporcionales se utiliza la interpolación lineal.

Sean dos puntos (x1, y1) y  (x3, y3), entonces la interpolación lineal consiste en hallar una estimación del valor y2, para un valor x2 tal que x1<x2<x3.

Teniendo en cuenta que las variaciones en una relación lineal son constantes entonces podemos determinar por ejemplo las siguientes proporciones:

Interpolacion_lineal_1Despejando y2 obtenemos que:

Interpolacion_lineal_2

recomendado

pdf_boton_p

applet

video-icon

Función inversa

función_inversa

Dada una función inyectiva f(x), su inversa es otra función, designada por f-1(x) de forma que se verifica: si f(a) = b, entonces f-1(b) = a

Podemos observar que:

  • El dominio de f−1 es el recorrido de f.
  • El recorrido de f−1 es el dominio de f.

Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa.

Propiedad: si dos funciones son inversas su composición es la función identidad i(x).

(f o f−1) (x) = (f−1 o f) (x) = i(x)

Para hallar la función inversa seguiremos un método en cuatro pasos:

(Previamente se debe comprobar si f(x) es una función inyectiva o es una función no inyectiva. Si f(x) es inyectiva tendrá función inversa, pero si no es inyectiva puede tener función inversa – con alguna restriccción – o no tenerla).

  1. Escribir la función en notación simple con las variables x e y.
  2. Despejar la variable independiente x.
  3. Intercambiar la x por la y, y la y por la x.
  4. Se vuelve a la notación normal de función con el formato f-1(x).

funcion_inversa_2La función así obtenida es la inversa de la función dada.

Hay que distinguir entre la función inversa, f−1(x), y la inversa de una función, 1/f(x).

Las gráficas de dos funciones inversas son simétricas respecto de la bisectriz del 1.er cuadrante y del 3.er cuadrante, que es la función identidad y = x .

funcion_inversa

+ INFO (FUNCIÓN INVERSA)

recomendado

pdf_boton_p

applet

video-icon

Composición de funciones

composicion_funciones

Dadas dos funciones reales de variable real, f y g, se llama composición de las funciones f y g, y se escribe g o f, a la función definida de R en R, por (g o f )(x) = g[f(x)].

La función ( g o f )(x) se lee « f compuesto con g aplicado a x ».

Primero actúa la función f y después actúa la función g, sobre f(x).

comp_def

Cálculo de la imagen de un elemento mediante una función compuesta

Para obtener la imagen de la función compuesta aplicada a un número x, se siguen estos pasos:

1. Se calcula la imagen de x mediante la función f, f(x).

2. Se calcula la imagen mediante la función g, de f(x). Es decir, se aplica la función g al resultado obtenido anteriormente.

La composición de funciones tiene sus correspondientes propiedades. Son múltiples los ejemplos que podemos proponer. o los ejemplos resueltos.

+ INFO (COMPOSICIÓN de FUNCIONES)

recomendado

pdf_boton_p

video-icon

Funciones por tramos

Funciones-lineales-a-trozos

Las funciones ayudan a describir fenómenos. Las distintas ciencias buscan describir matemáticamente los fenómenos que estudian para poder comprenderlos, controlarlos, reproducirlos, modificarlos. Hay un tipo de funciones que modelizan muy bien muchas de estas situaciones. Son las funciones por tramos o definidas a trozos.

Una función definida a trozos es aquella cuya expresión analítica contiene más de una “fórmula”. Cada una de las fórmulas se acompaña de una condición que especifica su dominio de aplicación. Así, la expresión analítica general de una función definida a trozos tiene el siguiente aspecto:

funcion_por_tramos, donde los dominios suelen aparecer como intervalos, inecuaciones o puntos.

En la gráfica de una función definida a trozos se suelen distinguir claramente varias partes distintas. La trayectoria puede ser continua o contener discontinuidades.

+ INFO (FUNCIONES por TRAMOS)

recomendado

web

pdf_boton_p

applet

video-icon

Dominio y recorrido de una función

range-domain

Función: una función entre dos conjuntos numéricos es una correspondencia unívoca, es decir que no hay ningún número que tenga más de una imagen.

Atendiendo a las variables x e y, nos centraremos en este tipo de funciones: función real de variable real.

Es muy importante que repases la clasificación de funciones.

Dominio de una función o campo de existencia: es el conjunto formado por los elementos que tienen imagen. Los valores que le damos a x ( variable independiente) forman el conjunto original. Graficamente lo miramos en el eje OX de abscisas, leyendo como escribimos de izquierda a derecha.

Imagen o Recorrido o rango de una función: es el conjunto formado por las imágenes. Son los valores que toma la función “y” variable dependiente, por eso se denomina f(x), su valor depende del valor que le demos a “x”. Graficamente lo miramos en el eje OY de ordenadas, leyendo de abajo a arriba.

+ INFO (DOMINIO y RECORRIDO DE FUNCIONES)

web

pdf_boton_p

video-icon

Graficador de funciones

Supongamos que deseamos graficar la siguiente función (polinomio):

Los pasos a seguir, son:
1. Usar el widget Wolfram Alpha que ves abajo.
2. Ingresamos en la caja de texto la función, usando la sintáxis informatica  (por ejemplo x^3-6x^2+4x+12 ), y le damos enter.
3. Wolfram Alpha retornará una ventana de respuesta.
4. Podemos especificar el dominio de la función, añadiendo la clausula:  from “valor” to “valor”,  entonces lo que  debemos escribir en la caja de texto queda como:  x^3-6x^2+4x+12  from 0 to 5

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.