Graficador de funciones

Supongamos que deseamos graficar la siguiente función (polinomio):

Los pasos a seguir, son:
1. Usar el widget Wolfram Alpha que ves abajo.
2. Ingresamos en la caja de texto la función, usando la sintáxis informatica  (por ejemplo x^3-6x^2+4x+12 ), y le damos enter.
3. Wolfram Alpha retornará una ventana de respuesta.
4. Podemos especificar el dominio de la función, añadiendo la clausula:  from “valor” to “valor”,  entonces lo que  debemos escribir en la caja de texto queda como:  x^3-6x^2+4x+12  from 0 to 5

Estudio y representación de funciones (con el uso de la derivada)

estudio_funciones

En el planteamiento de problemas típicos es frecuente manejar funciones matemáticas que describen los fenómenos y que conviene optimizar. Para ello se procede comúnmente al estudio (ver tabla resumen) de los puntos singulares de la función y al análisis de sus tendencias dentro de un marco concreto de valores.

Para estudiar una función:

  • Lo primero que suele hacerse es determinar su dominio de definición, esto es, el conjunto de valores de la variable para los cuales la función toma valor real.
  • Seguidamente se procede a estudiar la posible existencia de simetrías y periodicidades en la función, y se determinan los puntos de corte de la misma con los ejes, así como las asíntotas.
  • Otro aspecto importante en el estudio de una función consiste en analizar sus tendencias de crecimiento o decrecimiento y extremos relativos. Y por último se estudiará la curvatura (concavidad-convexidad) de la función y sus puntos de inflexión.
  • Una vez realizado este estudio preliminar, pasaremos a realizar una tabla resumen de puntos de la función y finalmente la gráfica de la misma.

Te presentamos ejemplos de un estudio completo de una función.  Los casos más frecuentes y sencillos son los que tratan sobre funciones polinómicas y racionales. No obstante, en los enlaces de abajo puedes analizar otro tipo de funciones: irracionales, logarítmicas, exponenciales, trigonométricas, etc.

importante_2

web

pdf_boton_p

video-icon

web

  • Estudio y representación gráfica de todo tipo de funciones

1.   Representación gráfica de funciones

2.   Representación de funciones polinómicas

3.   Representación de funciones racionales

4.   Representación de funciones irracionales

5.   Representación de funciones exponenciales

6.   Representación de funciones logarítmicas

7.   Representación de funciones trigonométricas

  • Ejercicios y problemas

1.   Representación de funciones polinómicas

2.   Representación de funciones racionales I

3.   Representación de funciones racionales II

4.   Representación de funciones irracionales

5.   Representación de funciones exponenciales

6.   Representación de funciones logarítmicas

7.   Representación de funciones trigonométricas I

8.   Representación de funciones trigonométricas II

9.   Representación de funciones con valor absoluto

10.   Representación de funciones a trozos

Aplicaciones de la derivada

aplic_derivadaUtilizando el concepto de derivada vamos a estudiar algunas propiedades de carácter local de las funciones. El estudio de estas características nos facilitará la representación gráfica de las mismas.

Se trata de obtener información de las funciones a partir de su derivada. Te recomendamos este resumen teórico muy claro y bien estructurado para ayudarte a conseguirlo.

OBJETIVOS

  • Calcular intervalos de crecimiento y decrecimiento
  • Calcular los extremos relativos de una función.
  • Aplicar la teoría de extremos relativos a problemas de optimización.
  • Calcular los intervalos de concavidad y convexidad y los puntos de inflexión de una función.

Si deseas profundizar en más ejercicios de cierto nivel a cerca de las aplicaciones de la derivada te proponemos dirigirte aquí.

Por otra parte, no debemos dejar a un lado los problemas de optimización de funciones que tantos dolores de cabeza pueden darnos en clase.

Estos problemas, basicamente aplicados en el área de la Física, de los materiales, de la Biología, de la economia, etc. Los casos más frecuentes son aplicaciones geométricas: por ejemplo, tratar de hallar las dimensiones de un terreno u objeto de una determinada forma (cuadrado, rectangular, circunferencia, ..) para que el gasto de material empleado para construir el objeto sea mínimo o para que el área del objeto/terreno.. sea el máximo. Puedes econtrar algunos ejemplos aquí.

Si te gustan los audiovisuales puedes encontrar unos buenos videos sobre aplicaciones de la derivada aquí.

No lo olvides, los métodos matemáticos resultan efectivos en el estudio de problemas en Física, Química, Biología, Medicina, Ciencias Sociales, Administración, Ingeniería, Economía, Finanzas y Ecología entre otras.

pdf_boton_p+ INFO (RECURSOS de DERIVADAS y APLICACIONES)

pdf_boton_p+ INFO (EJERCICIOS de DERIVADAS y APLICACIONES)

Representación de funciones con Google

Google love Maths !!!

Analizamos una nueva posibilidad del buscador Google.

En esta ocasión se aplica al área de matemáticas, y lo vamos a utilizar para representar gráficamente una función de una sola variable. Sí, para representar una función bastará escribirla en la caja de texto de búsqueda de Google, y la gráfica interactiva de la misma aparecerá en una caja como primer resultado de la búsqueda. Así de sencillo.

supercalc

Llegados a este punto, parece conveniente recordar cómo se escriben algunas funciónes:

  • Las potencias se escriben en el símbolo ^: Por ejemplo x^3 representa x3
  • Las raíces las escribiremos como es habitual sqrt: Por ejemplo sqrt(x) representa
  • Las funciones trigonométricas se escriben de forma habitual en inglés
  • También admite logaritmos
  • Y las constantes, simplemente las deletramos, por ejemplo hemos de escribir pi para el número

En el blog oficial de Google leemos un artículo dedicado a los amantes de las Matemáticas.

En este artículo, el autor nos explica cómo recuerda cuando un amigo le enseñó una calculadora gráfica en el colegio con la que podía representar cualquier función, mientras él seguía haciéndolo con lápiz y papel

Por ello, introduce la funcionalidad gráfica en Google, ahora podemos representar gráficamente cualquier función matemática, simplemente escribiéndola en el buscador. Prueba a escribir estas funciones una a una o en grupo, copiando este texto y pegándolo en el recuadro del buscador (la tercera  es la función más divertida):

  • x^3-3x+2
  • 2cos(x-1)
  • x/2, (x/2)^2, ln(x), cos(pi*x/5)
  • (sqrt(cos(x))*cos(200x)+sqrt(abs(x))-0.7)*(4-x*x)^0.01, sqrt(9-x^2), -sqrt(9-x^2) from -4.5 to 4.5

Calculadora de derivadas

Supongamos que deseamos derivar la siguiente función (polinomio):

Los pasos a seguir, son:
1. Usar el widget Wolfram Alpha que ves abajo.
2. Elegimos el tipo de derivada que nos interesa calcular (la primera derivada, la segunda derivada, etc).
3. Ingresamos en la caja la función, usando la sintáxis informatica  (por ejemplo x^4-x^2 ), y le damos enter.
4. Wolfram Alpha retornará una ventana de respuesta.

El reto de la Derivada

NI MÁS NI MENOS QUE UN COCIENTE INCREMENTAL

Deriving

¿Quieres dominar una de las operaciones clave de las Matemáticas?, pues ¡¡¡ ADELANTE !!!

web

  • Cómo calcular la derivada en un punto (ejercicios de aplicación de la definición) aquí
  • Presentación (PDF) sobre la derivada aquí
  • Interpretaciones geométrica y física de la derivada aquí
  • Reglas de derivación (PDF) con derivadas inmediatas aquí
  • Iniciación (PDF) al cálculo de derivadas sencillas aquí
  • Derivadas propuestas (HTML) (nivel medio) aquí
  • Batería de derivadas (PDF) con sus soluciones aquí
  • Ejemplos de derivadas (PDF) de funciones clasificadas por grupos aquí
  • Colección ejercicios resueltos (PDF) de derivadas y algunas aplicaciones aquí
  • Ejercicios resueltos (PDF) de derivabilidad (nivel medio-alto) aquí
  • Ejercicios resueltos (PDF) de aplicación de la derivada aquí
  • Web especializada en derivadas aquí
  • Videos explicativos (YOUTUBE) sobre la derivada aquí
  • Una derivada curiosa aquí

video-icon

Leer más de esta entrada

Asíntota, una palabra griega

Kobe_port_tower

Torre del puerto de Kobe (Japón)

Asíntota es un término con origen en un vocablo griego hace referencia a algo que no tiene coincidencia. El concepto se utiliza en el ámbito de la geometríapara nombrar a una recta  que, si se prolonga de maner indefinida, tiende a acercarse a una cierta curva o función, aunque sin alcanzar a tocarla.

Esto quiere decir que, mientras la recta y la curva van extendiéndose, la distancia entre ambas tenderá hacia el cero. De acuerdo a sus características, las asíntotas pueden clasificarse en verticales, horizontales u oblicuas.

Las asíntotas ayudan a la representación de curvas, proporcionan un soporte estructural e indican su comportamiento a largo plazo.

En este video puedes repasar como se hallan las asíntotas de una función racional con una profesora virtual:

  • Resumen teórico de ASINTOTAS aquí
  • Enunciados de ejercicios de ASÍNTOTAS aquí
  • Soluciones de los ejercicios de ASÍNTOTAS aquí
  • Otro video sobre ASÍNTOTAS aquí

pdf_boton_p+ INFO (EJERCICIOS de ASÍNTOTAS)

Límites de funciones

LA VERDAD ESTÁ EN EL LÍMITE

limitecerod'Alembert

El padre de los límites, Jean le Rond D’Alembert (1717-1783), crea la teoría de los límites al modificar el método de las primeras y últimas razones de Newton. En el tomo IX de la Encyclopédie , D ́Alembert escribe la siguiente definición de límite:
“Se dice que una cantidad es límite de otra cantidad, cuando la segunda puede aproximarse a la primera más que cualquier cantidad dada por pequeña que se la pueda suponer, sin que, no obstante la cantidad que se aproxima pueda jamás sobrepasar a la cantidad a la que se aproxima; de manera que la diferencia entre una tal cantidad y su límite sea absolutamente inasignable”.
La noción de límite es ya una noción matemática que sirve como soporte a otras como la continuidad, la derivada y la integral, hecho que ha contribuido a un uso universalizado de la misma.

importante_2

El cálculo de límites no debe ser un problema, te proponemos estas ayudas:

  • Lo imprescindible (HTML) sobre los límites aquí
  • Teoría a fondo de límites + ejemplos (PDF) aquí
  • Presentación (PDF) sobre límites con ejemplos aquí
  • Ejercicios (HTML) de límites resueltos paso a paso aquí
  • Colección de ejercicios (PDF) sobre límites (nivel medio) aquí
  • Colección de ejercicios (PDF) sobre límites y continuidad (nivel medio-alto) aquí
  • Listado (PDF) de límites para practicar aquí
  • Calculadora ON LINE de límites aquí
  • Videos explicativos (YOUTUBE) para resolver límites aquí o para aplicar los límites a casos concretos aquí
  • La verdad está en el límite (DIVULGATIVO), conócelo aquí
infinito
pdf_boton_p+ INFO (RECURSOS de LÍMITES Y CONTINUIDAD)

pdf_boton_p+ INFO (EJERCICIOS de LÍMITES Y CONTINUIDAD)

recomendado

video-icon

 

Funciones trigonométricas. Ecuaciones trigonométricas

sen_cos

Concepto de función trigonométrica

Una función trigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirse funciones circulares inversas: arco seno, arco coseno, etcétera.

La función seno

Se denomina función seno, y se denota por f (x) = sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.

Gráfica de la función seno (ver detalles y propiedades específicas de esta función)

La función cosecante puede calcularse como la inversa de la función seno expresada en radianes.

La función coseno

La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.

La función secante se determina como la inversa de la función coseno para un ángulo dado expresado en radianes.

La función tangente

Se define función tangente de una variable numérica real a la que resulta de aplicar la razón trigonométrica tangente a los distintos valores de dicha variable. Esta función se expresa genéricamente como f (x) = tg x, siendo x la variable independiente expresada en radianes.

La función cotangente es la inversa de la tangente, para cualquier ángulo indicado en radianes.

Propiedades de las funciones trigonométricas

Como características importantes y distintivas de las funciones trigonométricas pueden resaltarse las siguientes:

  • Las funciones seno, coseno y tangente son de naturaleza periódica, de manera que el periodo de las funciones seno y coseno es 2p y el de la función tangente es p.
  • Las funciones seno y coseno están definidas para todo el conjunto de los números reales. Ambas son funciones continuas (no así la función tangente).
  • Las funciones seno y coseno están acotadas, ya que sus valores están contenidos en el intervalo [-1,1]. La función tangente no está acotada.
  • Las funciones seno y tangente son simétricas respecto al origen, ya que sen (-x) = -sen x; tg (-x)=-tg x. En cambio, la función coseno es simétrica respecto al eje Y: cos (-x) = cos x.

Flecha_2  Pulsa aquí para ver detalles y PROPIEDADES específicas de las graficas de las funciones trigonométricas

Flecha_2  Pulsa aquí para conocer DOMINIO y RECORRIDO de las funciones trigonométricas

Funciones circulares recíprocas

Se llaman funciones circulares recíprocas a las que anulan la acción de las funciones trigonométricas. A cada función trigonométrica le corresponde una función circular recíproca, según la relación siguiente:

  • La función recíproca del seno es arco seno, simbolizada por f (x) = arc sen x.
  • La función recíproca del coseno es arco coseno, expresada por f (x) = arc cos x.
  • La función recíproca de la tangente es arco tangente, denotada por f (x) = arc tg x.

Ecuaciones trigonómetricas

Las funciones recíprocas  y todo el conjunto de fórmulas trigonométricas se aplicarán en la resolución de ecuaciones trigonométricas.

ecuacion_trigonometrica

Flecha_2  Pulsa aquí para ver ejemplos resueltos de ecuaciones trigonométricas

+ INFO (FUNCIONES TRIGONOMÉTRICAS)

importante_2

recomendado

pdf_boton_p

applet

 

Funciones logarítmicas

funciones_logaritmicas

Como la exponencial, la función logarítmica se utiliza con asiduidad en los cálculos y desarrollos de las matemáticas, las ciencias naturales (ej: cálculo de magnitud de terremotos) y las ciencias sociales. Entre otros fines, se usa ampliamente para «comprimir» la escala de medida de magnitudes cuyo crecimiento, demasiado rápido, dificulta su representación visual o la sistematización del fenómeno que representa.

Definición de función logarítmica

Una función logarítmica es aquella que genéricamente se expresa como f (x) = logax, siendo a la base de esta función, que ha de ser positiva y distinta de 1.

La función logarítmica es la inversa de la función exponencial, dado que:

loga x = b  <=>  ab = x

Propiedades de la función logarítmica

Las propiedades generales de la función logarítmica se deducen a partir de las de su inversa, la función exponencial. Así, se tiene que:

  • La función logarítmica sólo existe para valores de x positivos, sin incluir el cero. Por tanto, su dominio es el intervalo (0, +infinito).
  • Las imágenes obtenidas de la aplicación de una función logarítmica corresponden a cualquier elemento del conjunto de los números reales, luego el recorrido de esta función es R.
  • Es continua.
  • Corta con el eje OX en el punto (1,0), ya que loga 1 = 0, en cualquier base.
  • Tiene como asíntota vertical el eje OY: hacia abajo si a>1, hacia arriba si a<1.
  • Es creciente para a > 1 y decreciente para a < 1.
  • Es convexa si a>1 y cóncava si a<1.
logaritmica_exponencial

La función logarítmica es la inversa de la función exponencial (por consiguiente, son simétricas respecto de la bisectriz)

Ecuaciones logarítmicas

Cuando en una ecuación la variable o incógnita aparece como argumento (antilogartimo) o como base de un logaritmo, se llama logarítmica.

La resolución de ecuaciones logarítmicas se basa en las propiedades de los logartimos y en los mismos procedimientos utilizados en la resolución de las ecuaciones habituales. Aunque no existen métodos fijos, habitualmente se procura convertir la ecuación logarítmica en otra equivalente donde no aparezca ningún logaritmo. Para ello, se ha de intentar llegar a una situación semejante a la siguiente:

loga f (x) = loga g (x)

Entonces, se emplean los antilogaritmos (o lo que es lo mismo, la función inversa exponencial) para simplificar la ecuación hasta f (x) = g (x), que se resuelve por los métodos habituales.

También puede operarse en la ecuación logarítmica para obtener una ecuación equivalente del tipo:

loga f (x) = m

de donde se obtiene que f (x) = am, que sí se puede resolver de la forma habitual.

Sistemas de ecuaciones logarítmicas

Cuando en un sistema aparecen una o varias ecuaciones logarítmicas, se denomina sistema de ecuaciones logarítmicas. En el caso de un sistema de dos ecuaciones con dos incógnitas, se pueden producir tres casos distintos:

  • Un sistema formado por una ecuación polinómica y una logarítmica.
  • Un sistema constituido por dos ecuaciones logarítmicas.
  • Un sistema compuesto por una ecuación polinómica y una ecuación exponencial.

En cada caso, se utilizan los métodos habituales de resolución de sistemas de ecuaciones, teniendo siempre presente que estas ecuaciones han de transformarse en otras equivalentes, donde la incógnita no aparezca en el argumento o la base del logaritmo, ni en el exponente de la función exponencial.

recomendado

video-icon

+ INFO (FUNCIONES LOGARÍTMICAS)

pdf_boton_p

web

applet

video-icon

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.