Inecuaciones con valor absoluto

inecuacion_lineal

Todas las inecuaciones con valor absoluto se resuelven con la propiedad de acotación :

Si │a│< k  =>  -k < a < k  (casos 1 y 2 en los videos)

Si │a│> k  =>  -k > a > k  (casos 3 y 4 en los videos)

pdf_boton_p+ INFO (DESIGUALDADES CON VALOR ABSOLUTO)

video-icon

A continuación, para profundizar, te proponemos 4 videos muy aclaratorios.

Leer más de esta entrada

Anuncios

Ecuaciones con valor absoluto

valor_absoluto

El valor absoluto de un número real es un operador matemático que prescinde del signo. Por tanto, el conjunto de soluciones de una ecuación con valor absoluto viene dado por la siguiente relación:

|x| = a       ⇔       x = a    o    x = – a

siendo x , a ∈ R  y  a > 0

Ejemplos de resolución de ecuaciones con valor absoluto:

Ejemplo 2)     |2x – 5| = 4

De acuerdo con definición, tenemos dos posibilidades:

|2x – 5| = 4   ⇔   2x – 5 = 4   ⇔   2x = 9   ⇔   x = 9/2

|2x – 5| = 4   ⇔   2x – 5 = – 4   ⇔   2x = 1   ⇔   x = 1/2

Por tanto, el conjunto solución es:  S={1/2, 9/2}

pdf_boton_p+ INFO (ECUACIONES CON VALOR ABSOLUTO)

video-icon

SETUP nueva calculadora Casio FX-991 ClassWiz

Esta calculadora acaba de llegar al mercado y no es muy conocida aún. En este video (en inglés) puedes ver su puesta en marcha.

Applet para la representación de radicales en la recta real

Aquí tenéis una aplicación (applet) que permite representar raíces cuadradas en la recta real. Podéis elegir la raíz y veréis la representación. Para que se abra tenéis que pinchar en la imagen que aparece a continuación.

Para seleccionar el número debéis mover el deslizador n que aparece en la aplicación.

(Imprescindible tener instalado el plugin de JAVA)

applet_radicales

pdf_boton_p+ INFO (REPRESENTACIÓN DE RADICALES)

video-icon

Planteamiento y resolución de problemas algebráicos

problems
La resolución de problemas es una de las tareas más creativas, exigentes e interesantes para la mente humana y es un área que ha atraído el interés de los científicos. La comprensión de un problema parte de la comprensión de su enunciado, que no es sino un texto habitualmente corto, con unas pocas frases. Este texto corto demanda una gran cantidad de inferencias y la activación de conocimiento previo específico.
 box
Generalmente cada problema requiere el planteamiento de una ecuación. Por tal razón, es muy importante expresar la información dada en palabras en lenguaje algebraico. Veamos a continuación algunos ejemplos (con soluciones) expresados en lenguaje natural que nos pueden ayudar más adelante en el planteamiento y resolución de ecuaciones.
web

video-icon

El número π a lo largo de la historia

Valores obtenidos para PI a lo largo de la historia

Las columnas indican autor del cálculo, año y número de decimales.

Babilonios                  Hacia el 2000 a.C.     1     3.125  = 3 + 1/8
Egipcios                    Hacia el 2000 a.C.     1     3.16049=(16/9)2
Arquímedes                  Hacia el 250 a.C.      3     3.1418 (media) 
Ptolomeo                      150                  3     3.14166  
Liu Hui                       263                  5     3.14159  
Tsu Ch'ung Chi                480                  6     3.1415929(=355/113)
Aryabhata                     499                  4     3.14156  
Al-Khowarizmi                 800                  4     3.1416  
Al-Kashi                     1429                 14     3.14159265358979
Vieta                        1593                  9     3.141592653
Romanus                      1593                 15     3.141592653589793
Van Ceulen                   1596                 20    
Van Ceulen                   1615                 35    

A partir de esta fecha empiezan a utilizarse series.

Sharp                        1699                 71    
Machin                       1706                100    
De Lagny                     1719                127     (112 correctos)  
Vega                         1794                140    
Rutherford                   1824                208     (152 correctos)  
Strassnitzky y Dase          1844                200    
Clausen                      1847                248    
Lehmann                      1853                261    
Rutherford                   1853                440    
Shanks                       1874                707     (527 correctos)

Utilizando calculadora
Ferguson y Wrench            1947                808  
Smith y Wrench               1949              1,120 

Utilizando ordenador
 Leer más de esta entrada

El número aúreo, la proporción divina

numero-phi

Es hora de reconocer en nuestro uso diario de los números a uno muy especial, que aparece repetidamente en las conversaciones de matemáticas. Es el número de oro, (PHI), también conocido como la proporción áurea. Es uno de los conceptos matemáticos que aparecen una y otra vez ligados a la naturaleza y el arte, compitiendo con PI en popularidad y aplicaciones. esta ligado al denominado rectángulo de oro y a la sucessión de Fibonacci. Aparece repetidamente en el estudio del crecimiento de las plantas, las piñas, la distribución de las hojas en un tallo, la formación de caracolas… y por supuesto en cualquier estudio armónico del arte.

Aunque no fue hasta el siglo XX cuando el número de oro (conocido también como sección áurea, proporción áurea o razón áurea) recibió su símbolo, (PHI) (la sexta letra del abecedario griego, nuestra efe), su descubrimiento data de la época de la Grecia clásica (s. V a.C.), donde era perfectamente conocido y utilizado en los diseños arquitectónicos (por ejemplo el Partenón), y escultóricos. Fue seguramente el estudio de las proporciones y de la medida geométrica de un segmento lo que llevó a los griegos a su descubrimiento.

El valor numérico de PHI es de 1,618... . es un número irracional como PI, es decir, un número decimal con infinitas cifras decimales sin que exista una secuencia de repetición que lo convierta en un número periodico.

Leer más de esta entrada