Asíntota, una palabra griega

Kobe_port_tower

Torre del puerto de Kobe (Japón)

Asíntota es un término con origen en un vocablo griego hace referencia a algo que no tiene coincidencia. El concepto se utiliza en el ámbito de la geometríapara nombrar a una recta  que, si se prolonga de maner indefinida, tiende a acercarse a una cierta curva o función, aunque sin alcanzar a tocarla.

Esto quiere decir que, mientras la recta y la curva van extendiéndose, la distancia entre ambas tenderá hacia el cero. De acuerdo a sus características, las asíntotas pueden clasificarse en verticales, horizontales u oblicuas.

Las asíntotas ayudan a la representación de curvas, proporcionan un soporte estructural e indican su comportamiento a largo plazo.

En este video puedes repasar como se hallan las asíntotas de una función racional con una profesora virtual:

  • Resumen teórico de ASINTOTAS aquí
  • Enunciados de ejercicios de ASÍNTOTAS aquí
  • Soluciones de los ejercicios de ASÍNTOTAS aquí
  • Otro video sobre ASÍNTOTAS aquí

pdf_boton_p+ INFO (EJERCICIOS de ASÍNTOTAS)

Anuncios

Límites de funciones

LA VERDAD ESTÁ EN EL LÍMITE

limitecerod'Alembert

El padre de los límites, Jean le Rond D’Alembert (1717-1783), crea la teoría de los límites al modificar el método de las primeras y últimas razones de Newton. En el tomo IX de la Encyclopédie , D ́Alembert escribe la siguiente definición de límite:
“Se dice que una cantidad es límite de otra cantidad, cuando la segunda puede aproximarse a la primera más que cualquier cantidad dada por pequeña que se la pueda suponer, sin que, no obstante la cantidad que se aproxima pueda jamás sobrepasar a la cantidad a la que se aproxima; de manera que la diferencia entre una tal cantidad y su límite sea absolutamente inasignable”.
La noción de límite es ya una noción matemática que sirve como soporte a otras como la continuidad, la derivada y la integral, hecho que ha contribuido a un uso universalizado de la misma.

importante_2

El cálculo de límites no debe ser un problema, te proponemos estas ayudas:

  • Lo imprescindible (HTML) sobre los límites aquí
  • Teoría a fondo de límites + ejemplos (PDF) aquí
  • Presentación (PDF) sobre límites con ejemplos aquí
  • Ejercicios (HTML) de límites resueltos paso a paso aquí
  • Colección de ejercicios (PDF) sobre límites (nivel medio) aquí
  • Colección de ejercicios (PDF) sobre límites y continuidad (nivel medio-alto) aquí
  • Listado (PDF) de límites para practicar aquí
  • Calculadora ON LINE de límites aquí
  • Videos explicativos (YOUTUBE) para resolver límites aquí o para aplicar los límites a casos concretos aquí
  • La verdad está en el límite (DIVULGATIVO), conócelo aquí
infinito
pdf_boton_p+ INFO (RECURSOS de LÍMITES Y CONTINUIDAD)

pdf_boton_p+ INFO (EJERCICIOS de LÍMITES Y CONTINUIDAD)

recomendado

video-icon

 

Funciones exponenciales

funciones_exponenciales

En la naturaleza y en la vida social existen numerosos fenómenos que se rigen por leyes de crecimiento exponencial. Tal sucede, por ejemplo, en el aumento de un capital invertido a interés continuo o en el crecimiento de las poblaciones. En sentido inverso, también las sustancias radiactivas siguen una ley exponencial en su ritmo de desintegración para producir otros tipos de átomos y generar energía y radiaciones ionizantes.

Se llama función exponencial de base a aquella cuya forma genérica es f (x) = ax, siendo a un número real positivo distinto de 1. Por su propia definición, toda función exponencial tiene por dominio de definición el conjunto de los números reales R.

La función exponencial puede considerarse como la inversa de la función logarítmica, por cuanto se cumple que:

barra

Propiedades de las funciones exponenciales

Para toda función exponencial de la forma f(x) = ax, se cumplen las siguientes propiedades generales:

  • La función aplicada al valor cero es siempre igual a 1:   f (0) = a0 = 1
  • La función exponencial aplicada al valor 1 es siempre igual a la base:   f (1) = a1 = a
  • La función exponencial aplicada a exponente negativo da como resultado el valor inverso:   f (1) = a-n = 1/an

Propiedades gráficas de la función exponencial elemental

A partir de su representación gráfica observamos que las funciones exponenciales cumplen las propiedades siguientes:

  • Dominio:  RDom(f)=R
  • Imagen:  (0, +infinito)Im(f)=(0,+)0
  • Corte con el eje OY en el punto (0,1)
  • Continuidad: es continua en todo su dominio MR
  • Asíntota horizontal: Eje OX (por la izquierda si a>1, por la derecha si a<1)
  • Monotonía: creciente si a>1 y decreciente si a<1
  • Curvatura: cóncava

La función ex

Un caso particularmente interesante de función exponencial es f(x) = ex. El número irracional e, de valor 2,7182818285…, se define matemáticamente como el límite al que tiende la expresión (1 + 1/n)n cuando el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos .

La función ex presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y matemáticas. Una de ellas es que coincide con su propia derivada.

Ecuaciones exponenciales

Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería ax = b.

Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos:

  • Igualación de la base: consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos exponentes: Ax = Ay.En tales condiciones, la resolución de la ecuación proseguiría a partir de la igualdad x = y.
  • Cambio de variable: consiste en sustituir todas las potencias que figuran en la ecuación por potencias de una nueva variable, convirtiendo la ecuación original en otra más fácil de resolver.   Ejemplo: 22x – 3 × 2x – 4 = 0 t2 – 3t – 4 = 0luego se deshace el cambio de variable.

Por otra parte, un sistema de ecuaciones se denomina exponencial cuando en alguna de sus ecuaciones la incógnita aparece como exponente. Para la resolución de sistemas de ecuaciones exponenciales se aplican también, según convenga, los métodos de igualación de la base y de cambio de variable.

recomendado

video-icon

+ INFO (FUNCIONES EXPONENCIALES)

pdf_boton_p

web

applet

video-icon

 

Curvas de oferta y demanda

La oferta y la demanda expresan las cantidades que los individuos dentro del sistema económico están dispuestos a adquirir y a demandar y otros interesados en producir o vender, cada grupo en forma independiente, lo cual no es igual que lo que pueden hacer, pues esto realmente se determina por la interacción entre unos y otros. El modelo de oferta y demanda se completa cuando se establece un acuerdo entre compradores y vendedores.

oferta_demanda_2

Por lo tanto, la operación sólo es efectiva cuando demandantes y fabricantes logran un acuerdo y realizan una transacción económica encontrando el precio que mas satisface las expectativas.

El precio al cual están dispuestos a transaccionar una determinada cantidad de producto, tanto el productor como el comprador se le conoce como precio de mercado o precio de equilibrio.

En una economía de libre empresa, los precios de los productos son determinados en las intersecciones de las curvas de la demanda y de la oferta del mercado del producto.

Cuando el precio es igual al de equilibrio y la cantidad comprada y vendida es igual a la cantidad de equilibrio se dice que existe un equilibrio del mercado. Los desplazamientos de las curvas de la oferta y la demanda están íntimamente relacionados con el movimiento de los precios y con la orientación de las actividades de producción.

applet

La curvas de oferta (qs) y demanda (qdse establecen mediante funciones lineales o cuadráticas con variable precio (p) que dan lugar a tres tipos de modelo de mercado:

  • Modelo lineal (ambas funciones son lineales)
  • Modelo cuadrático (ambas funciones son cuadráticas)
  • Modelo mixto (una función es lineal y la otra cuadrática)

Función cuadrática

parabola

Una función cuadrática es aquella que puede escribirse de la forma: f(x) = ax2 + bx + c

donde a, b y c son números reales cualesquiera y a distinto de cero.

Si representamos “todos” los puntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola.

Para repasar los fundamentos de la función cuadrática te proponemos estos enlaces:

Las parábolas pueden tener traslaciones y dilataciones según modifiquemos la expresión analítica de la función.

recomendado

Función lineal e interpolación lineal

funcion_afin

En primer lugar te proponemos un enlace para repasar estos contenidos básicos:

  1. La función lineal (de proporcionalidad directa): recta que pasa por el origen.
  2. La función afín: cualquier recta oblicua.
  3. La función constante: recta horizontal.

Con estos conocimientos previos puedes abordar la INTERPOLACIÓN LINEAL.

Interpolacion_lineal_3La interpolación consiste en hallar un dato dentro de un intervalo en el que conocemos los valores en los extremos. Si se supone que las variaciones son proporcionales se utiliza la interpolación lineal.

Sean dos puntos (x1, y1) y  (x3, y3), entonces la interpolación lineal consiste en hallar una estimación del valor y2, para un valor x2 tal que x1<x2<x3.

Teniendo en cuenta que las variaciones en una relación lineal son constantes entonces podemos determinar por ejemplo las siguientes proporciones:

Interpolacion_lineal_1Despejando y2 obtenemos que:

Interpolacion_lineal_2

recomendado

pdf_boton_p

applet

video-icon

Función inversa

función_inversa

Dada una función inyectiva f(x), su inversa es otra función, designada por f-1(x) de forma que se verifica: si f(a) = b, entonces f-1(b) = a

Podemos observar que:

  • El dominio de f−1 es el recorrido de f.
  • El recorrido de f−1 es el dominio de f.

Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa.

Propiedad: si dos funciones son inversas su composición es la función identidad i(x).

(f o f−1) (x) = (f−1 o f) (x) = i(x)

Para hallar la función inversa seguiremos un método en cuatro pasos:

(Previamente se debe comprobar si f(x) es una función inyectiva o es una función no inyectiva. Si f(x) es inyectiva tendrá función inversa, pero si no es inyectiva puede tener función inversa – con alguna restriccción – o no tenerla).

  1. Escribir la función en notación simple con las variables x e y.
  2. Despejar la variable independiente x.
  3. Intercambiar la x por la y, y la y por la x.
  4. Se vuelve a la notación normal de función con el formato f-1(x).

funcion_inversa_2La función así obtenida es la inversa de la función dada.

Hay que distinguir entre la función inversa, f−1(x), y la inversa de una función, 1/f(x).

Las gráficas de dos funciones inversas son simétricas respecto de la bisectriz del 1.er cuadrante y del 3.er cuadrante, que es la función identidad y = x .

funcion_inversa

+ INFO (FUNCIÓN INVERSA)

recomendado

pdf_boton_p

applet

video-icon