Curvas de oferta y demanda

La oferta y la demanda expresan las cantidades que los individuos dentro del sistema económico están dispuestos a adquirir y a demandar y otros interesados en producir o vender, cada grupo en forma independiente, lo cual no es igual que lo que pueden hacer, pues esto realmente se determina por la interacción entre unos y otros. El modelo de oferta y demanda se completa cuando se establece un acuerdo entre compradores y vendedores.

oferta_demanda_2

Por lo tanto, la operación sólo es efectiva cuando demandantes y fabricantes logran un acuerdo y realizan una transacción económica encontrando el precio que mas satisface las expectativas.

El precio al cual están dispuestos a transaccionar una determinada cantidad de producto, tanto el productor como el comprador se le conoce como precio de mercado o precio de equilibrio.

En una economía de libre empresa, los precios de los productos son determinados en las intersecciones de las curvas de la demanda y de la oferta del mercado del producto.

Cuando el precio es igual al de equilibrio y la cantidad comprada y vendida es igual a la cantidad de equilibrio se dice que existe un equilibrio del mercado. Los desplazamientos de las curvas de la oferta y la demanda están íntimamente relacionados con el movimiento de los precios y con la orientación de las actividades de producción.

applet

La curvas de oferta (qs) y demanda (qdse establecen mediante funciones lineales o cuadráticas con variable precio (p) que dan lugar a tres tipos de modelo de mercado:

  • Modelo lineal (ambas funciones son lineales)
  • Modelo cuadrático (ambas funciones son cuadráticas)
  • Modelo mixto (una función es lineal y la otra cuadrática)

Función cuadrática

parabola

Una función cuadrática es aquella que puede escribirse de la forma: f(x) = ax2 + bx + c

donde a, b y c son números reales cualesquiera y a distinto de cero.

Si representamos “todos” los puntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola.

Para repasar los fundamentos de la función cuadrática te proponemos estos enlaces:

Las parábolas pueden tener traslaciones y dilataciones según modifiquemos la expresión analítica de la función.

recomendado

Función lineal e interpolación lineal

funcion_afin

En primer lugar te proponemos un enlace para repasar estos contenidos básicos:

  1. La función lineal (de proporcionalidad directa): recta que pasa por el origen.
  2. La función afín: cualquier recta oblicua.
  3. La función constante: recta horizontal.

Con estos conocimientos previos puedes abordar la INTERPOLACIÓN LINEAL.

Interpolacion_lineal_3La interpolación consiste en hallar un dato dentro de un intervalo en el que conocemos los valores en los extremos. Si se supone que las variaciones son proporcionales se utiliza la interpolación lineal.

Sean dos puntos (x1, y1) y  (x3, y3), entonces la interpolación lineal consiste en hallar una estimación del valor y2, para un valor x2 tal que x1<x2<x3.

Teniendo en cuenta que las variaciones en una relación lineal son constantes entonces podemos determinar por ejemplo las siguientes proporciones:

Interpolacion_lineal_1Despejando y2 obtenemos que:

Interpolacion_lineal_2

recomendado

pdf_boton_p

applet

video-icon

Función inversa

función_inversa

Dada una función inyectiva f(x), su inversa es otra función, designada por f-1(x) de forma que se verifica: si f(a) = b, entonces f-1(b) = a

Podemos observar que:

  • El dominio de f−1 es el recorrido de f.
  • El recorrido de f−1 es el dominio de f.

Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa.

Propiedad: si dos funciones son inversas su composición es la función identidad i(x).

(f o f−1) (x) = (f−1 o f) (x) = i(x)

Para hallar la función inversa seguiremos un método en cuatro pasos:

(Previamente se debe comprobar si f(x) es una función inyectiva o es una función no inyectiva. Si f(x) es inyectiva tendrá función inversa, pero si no es inyectiva puede tener función inversa – con alguna restriccción – o no tenerla).

  1. Escribir la función en notación simple con las variables x e y.
  2. Despejar la variable independiente x.
  3. Intercambiar la x por la y, y la y por la x.
  4. Se vuelve a la notación normal de función con el formato f-1(x).

funcion_inversa_2La función así obtenida es la inversa de la función dada.

Hay que distinguir entre la función inversa, f−1(x), y la inversa de una función, 1/f(x).

Las gráficas de dos funciones inversas son simétricas respecto de la bisectriz del 1.er cuadrante y del 3.er cuadrante, que es la función identidad y = x .

funcion_inversa

+ INFO (FUNCIÓN INVERSA)

recomendado

pdf_boton_p

applet

video-icon

Composición de funciones

composicion_funciones

Dadas dos funciones reales de variable real, f y g, se llama composición de las funciones f y g, y se escribe g o f, a la función definida de R en R, por (g o f )(x) = g[f(x)].

La función ( g o f )(x) se lee « f compuesto con g aplicado a x ».

Primero actúa la función f y después actúa la función g, sobre f(x).

comp_def

Cálculo de la imagen de un elemento mediante una función compuesta

Para obtener la imagen de la función compuesta aplicada a un número x, se siguen estos pasos:

1. Se calcula la imagen de x mediante la función f, f(x).

2. Se calcula la imagen mediante la función g, de f(x). Es decir, se aplica la función g al resultado obtenido anteriormente.

La composición de funciones tiene sus correspondientes propiedades. Son múltiples los ejemplos que podemos proponer. o los ejemplos resueltos.

+ INFO (COMPOSICIÓN de FUNCIONES)

recomendado

pdf_boton_p

video-icon

Funciones por tramos

Funciones-lineales-a-trozos

Las funciones ayudan a describir fenómenos. Las distintas ciencias buscan describir matemáticamente los fenómenos que estudian para poder comprenderlos, controlarlos, reproducirlos, modificarlos. Hay un tipo de funciones que modelizan muy bien muchas de estas situaciones. Son las funciones por tramos o definidas a trozos.

Una función definida a trozos es aquella cuya expresión analítica contiene más de una “fórmula”. Cada una de las fórmulas se acompaña de una condición que especifica su dominio de aplicación. Así, la expresión analítica general de una función definida a trozos tiene el siguiente aspecto:

funcion_por_tramos, donde los dominios suelen aparecer como intervalos, inecuaciones o puntos.

En la gráfica de una función definida a trozos se suelen distinguir claramente varias partes distintas. La trayectoria puede ser continua o contener discontinuidades.

+ INFO (FUNCIONES por TRAMOS)

recomendado

web

pdf_boton_p

applet

video-icon

Gráficas de funciones on-line con “Fooplot”

Fooplot

Crear gráficas online en la web Fooplot para posteriormente, bajarla al disco duro. De esta manera, la podremos insertar en un documento, blog, web,… e imprimir.

Esos tiempos de estar realizando gráficas de funciones  manualmente han llegado a su fin. FooPlot es una herramienta on-line para poder representar la gráfica de  las funciones que nos interese. Su funcionamiento es bastante simple: solo debes componer la función (usando los símbolos habituales para las operaciones básicas, y recurriendo si es preciso a un extenso número de funciones predefinidas, tales como sin, sqrt, ln, …) y añadirla en la barra de dirección del navegador.
barra
Otra forma de introducir la información es directamente en un campo de texto que ofrece FooPlot. Entre las acciones que te deja realizar encontramos:
  • Se puede ajustar manualmente el rango de representación.
  • Ampliar una parte de la figura que nos interese.
  • Superponer hasta cinco funciones en diferentes colores.
  • Representar funciones de dos variables.
La web de est Graficador es:  http://fooplot.com/
Otras web para “graficar” funciones: