Sistemas de ecuaciones no lineales

Sistema_no_linealUn sistema de ecuaciones es no lineal si, por lo menos, una de sus ecuaciones no es lineal (hay un grado mayor o menor que uno en las variables). Estos sistemas se resolverán habitualmente por sustitución o igualación. Es recomendable dibujar las ecuaciones del sistema en la medida de lo posible para hacerse una idea aproximada de la interpretación geométrica de las soluciones, si las hay.

Es importante comprobar que la resolución analítica concuerda con la representación gráfica de las soluciones, ya sea manualmente, ayudándose con calculadora, o mediante ordenador. Esto permitirá a la vez comprender los resultados, lo cual es siempre más efectivo que resolver el sistema sin ninguna idea aproximada de su significado.

pdf_boton_p+ INFO (SISTEMAS DE ECUACIONES NO LINEALES)

web

applet

video-icon

Método de Gauss

Metodo_Gauss

El método de Gauss para resolver sistemas de ecuaciones lineales, es una generalización del método de reducción. Consiste en transformar el sistema dado en otro equivalente en forma escalonada y de fácil resolución.

Este método conocido también como de triangulación o de cascada, nos permite resolver sistemas de ecuaciones lineales con cualquier número de ecuaciones y de incógnitas.

La idea es muy simple; por ejemplo, para el caso de un sistema de tres ecuaciones con tres incógnitas se trata de obtener un sistema equivalente cuya primera ecuación tenga tres incógnitas, la segunda dos y la tercera una. Se obtiene así un sistema triangular o en cascada de la forma:

Ax + By + Cz = D
Ey + Fz = G
Hz = I

La resolución del sistema es ahora inmediata; basta calcular z en la tercera ecuación, llevar este valor de z a la segunda ecuación para obtener el valor de y, y así despejar la incógnita x en la primera ecuación, conocidos ya z e y.

Al resolver un sistema puede suprimirse, sin que varíe su resolución, cualquier ecuación que pueda obtenerse a partir de otras.

  • Te aconsejamos primero consultar un resumen con teoría y ejemplos aquí.
  • Puedes ver un ejemplo resuelto con la aplicación del álgebra de matrices aquí.
  • El método de Gauss distingue entre sistemas compatibles determinados (SCD), sistemas incompatibles SI y sistemas compatibles indeterminados (SCI). Pulsa para ver ejemplos aquí.

pdf_boton_p+ INFO (MÉTODO de GAUSS)

applet

video-icon