Aplicaciones de la derivada

aplic_derivadaUtilizando el concepto de derivada vamos a estudiar algunas propiedades de carácter local de las funciones. El estudio de estas características nos facilitará la representación gráfica de las mismas.

Se trata de obtener información de las funciones a partir de su derivada. Te recomendamos este resumen teórico muy claro y bien estructurado para ayudarte a conseguirlo.

OBJETIVOS

  • Calcular intervalos de crecimiento y decrecimiento
  • Calcular los extremos relativos de una función.
  • Aplicar la teoría de extremos relativos a problemas de optimización.
  • Calcular los intervalos de concavidad y convexidad y los puntos de inflexión de una función.

Si deseas profundizar en más ejercicios de cierto nivel a cerca de las aplicaciones de la derivada te proponemos dirigirte aquí.

Por otra parte, no debemos dejar a un lado los problemas de optimización de funciones que tantos dolores de cabeza pueden darnos en clase.

Estos problemas, basicamente aplicados en el área de la Física, de los materiales, de la Biología, de la economia, etc. Los casos más frecuentes son aplicaciones geométricas: por ejemplo, tratar de hallar las dimensiones de un terreno u objeto de una determinada forma (cuadrado, rectangular, circunferencia, ..) para que el gasto de material empleado para construir el objeto sea mínimo o para que el área del objeto/terreno.. sea el máximo. Puedes econtrar algunos ejemplos aquí.

Si te gustan los audiovisuales puedes encontrar unos buenos videos sobre aplicaciones de la derivada aquí.

No lo olvides, los métodos matemáticos resultan efectivos en el estudio de problemas en Física, Química, Biología, Medicina, Ciencias Sociales, Administración, Ingeniería, Economía, Finanzas y Ecología entre otras.

pdf_boton_p+ INFO (RECURSOS de DERIVADAS y APLICACIONES)

pdf_boton_p+ INFO (EJERCICIOS de DERIVADAS y APLICACIONES)

El reto de la Derivada

NI MÁS NI MENOS QUE… EL LÍMITE DE UN COCIENTE INCREMENTAL

Deriving

¿Quieres dominar una de las operaciones clave de las Matemáticas?, pues ¡¡¡ ADELANTE !!!

web

  • Cómo calcular la derivada en un punto (ejercicios de aplicación de la definición) aquí
  • Presentación (PDF) sobre la derivada aquí
  • Interpretaciones geométrica y física de la derivada aquí
  • Reglas de derivación (PDF) con derivadas inmediatas aquí
  • Iniciación (PDF) al cálculo de derivadas sencillas aquí
  • Derivadas propuestas (HTML) (nivel medio) aquí
  • Batería de derivadas (PDF) con sus soluciones aquí
  • Ejemplos de derivadas (PDF) de funciones clasificadas por grupos aquí
  • Colección ejercicios resueltos (PDF) de derivadas y algunas aplicaciones aquí
  • Ejercicios resueltos (PDF) de derivabilidad (nivel medio-alto) aquí
  • Ejercicios resueltos (PDF) de aplicación de la derivada aquí
  • Web especializada en derivadas aquí
  • Videos explicativos (YOUTUBE) sobre la derivada aquí
  • Una derivada curiosa aquí

video-icon

Leer más de esta entrada

Asíntota, una palabra griega

Kobe_port_tower

Torre del puerto de Kobe (Japón)

Asíntota es un término con origen en un vocablo griego hace referencia a algo que no tiene coincidencia. El concepto se utiliza en el ámbito de la geometríapara nombrar a una recta  que, si se prolonga de maner indefinida, tiende a acercarse a una cierta curva o función, aunque sin alcanzar a tocarla.

Esto quiere decir que, mientras la recta y la curva van extendiéndose, la distancia entre ambas tenderá hacia el cero. De acuerdo a sus características, las asíntotas pueden clasificarse en verticales, horizontales u oblicuas.

Las asíntotas ayudan a la representación de curvas, proporcionan un soporte estructural e indican su comportamiento a largo plazo.

En este video puedes repasar como se hallan las asíntotas de una función racional con una profesora virtual:

  • Resumen teórico de ASINTOTAS aquí
  • Enunciados de ejercicios de ASÍNTOTAS aquí
  • Soluciones de los ejercicios de ASÍNTOTAS aquí
  • Otro video sobre ASÍNTOTAS aquí

pdf_boton_p+ INFO (EJERCICIOS de ASÍNTOTAS)

Límites de funciones

LA VERDAD ESTÁ EN EL LÍMITE

limitecerod'Alembert

El padre de los límites, Jean le Rond D’Alembert (1717-1783), crea la teoría de los límites al modificar el método de las primeras y últimas razones de Newton. En el tomo IX de la Encyclopédie , D ́Alembert escribe la siguiente definición de límite:
«Se dice que una cantidad es límite de otra cantidad, cuando la segunda puede aproximarse a la primera más que cualquier cantidad dada por pequeña que se la pueda suponer, sin que, no obstante la cantidad que se aproxima pueda jamás sobrepasar a la cantidad a la que se aproxima; de manera que la diferencia entre una tal cantidad y su límite sea absolutamente inasignable».
La noción de límite es ya una noción matemática que sirve como soporte a otras como la continuidad, la derivada y la integral, hecho que ha contribuido a un uso universalizado de la misma.

importante_2

El cálculo de límites no debe ser un problema, te proponemos estas ayudas:

  • Lo imprescindible (HTML) sobre los límites aquí
  • Teoría a fondo de límites + ejemplos (PDF) aquí
  • Presentación (PDF) sobre límites con ejemplos aquí
  • Ejercicios (HTML) de límites resueltos paso a paso aquí
  • Colección de ejercicios (PDF) sobre límites (nivel medio) aquí
  • Colección de ejercicios (PDF) sobre límites y continuidad (nivel medio-alto) aquí
  • Listado (PDF) de límites para practicar aquí
  • Calculadora ON LINE de límites aquí
  • Videos explicativos (YOUTUBE) para resolver límites aquí o para aplicar los límites a casos concretos aquí
  • La verdad está en el límite (DIVULGATIVO), conócelo aquí
infinito
pdf_boton_p+ INFO (RECURSOS de LÍMITES Y CONTINUIDAD)

pdf_boton_p+ INFO (EJERCICIOS de LÍMITES Y CONTINUIDAD)

recomendado

video-icon

 

Inecuaciones con valor absoluto

inecuacion_lineal

Todas las inecuaciones con valor absoluto se resuelven con la propiedad de acotación :

Si │a│< k  =>  -k < a < k  (casos 1 y 2 en los videos)

Si │a│> k  =>  -k > a > k  (casos 3 y 4 en los videos)

pdf_boton_p+ INFO (DESIGUALDADES CON VALOR ABSOLUTO)

video-icon

A continuación, para profundizar, te proponemos 4 videos muy aclaratorios.

Leer más de esta entrada

Ecuaciones con valor absoluto

valor_absoluto

El valor absoluto de un número real es un operador matemático que prescinde del signo. Por tanto, el conjunto de soluciones de una ecuación con valor absoluto viene dado por la siguiente relación:

|x| = a       ⇔       x = a    o    x = – a

siendo x , a ∈ R  y  a > 0

Ejemplos de resolución de ecuaciones con valor absoluto:

Ejemplo 2)     |2x – 5| = 4

De acuerdo con definición, tenemos dos posibilidades:

|2x – 5| = 4   ⇔   2x – 5 = 4   ⇔   2x = 9   ⇔   x = 9/2

|2x – 5| = 4   ⇔   2x – 5 = – 4   ⇔   2x = 1   ⇔   x = 1/2

Por tanto, el conjunto solución es:  S={1/2, 9/2}

pdf_boton_p+ INFO (ECUACIONES CON VALOR ABSOLUTO)

video-icon

Kit de supervivencia para examenes finales (II)

funcion_inversa

 

En estos post de Junio estamos colgando una serie de resúmenes y ejercicios básicos para afrontar un examen de Mates de 1º de Bachillerato con ciertas posibilidades, en otras palabras un «KIT de SUPERVIVENCIA«.

Dedicado todo ello al Estudio de Funciones:

Kit de «supervivencia» para examenes finales (I)

En estos post de Junio iremos colgando una serie de resúmenes y ejercicios básicos para afrontar un examen de Mates de 1º de Bachillerato con ciertas posibilidades, en otras palabras un «KIT de SUPERVIVENCIA«.

kit

Ahí van …

  • Empezamos por algo tan básico como las Operaciones con Radicales:
  1. Suma de Radicales
  2. Producto de Radicales
  3. Cociente de Radicales
  4. Potencia de Radicales
  5. Raiz de Radicales
  6. Racionalización de Radicales
  7. Ejercicios 1 y Ejercicios 2
  8. Resumen de Operaciones con Radicales
  9. Ejercicios resueltos de Radicales
  10. Video explicativo sobre Racionalización
  11. Para aprender radicales a base de bien
  • Seguimos con el Método de Gauss:
  1. Fundamentos del método
  2. Diferentes tipos de sistemas de Gauss (SCD, SI, SCI)
  3. Ejercicios del método de Gauss matricial
  4. Para aprender el Método de Gauss a base de bien
  • Continuamos con Límites:
  1. Un paseo por diferentes tipos de límites
  2. Propuestas de límites con la solución al alcance
  3. Para aprender límites a base de bien
  • Continuamos con Derivadas:
  1. Como aprender a derivar con fiabilidad
  2. 13 ejercicios modelo sobre el uso de derivadas y sus aplicaciones
  3. Colección de ejercicios sobre las derivadas y sus aplicaciones al estudio de funciones
  4. 8 ejercicios modelo de estudio y representación de funciones
  5. Para aprender derivadas a base de bien

De momento nos quedamos aquí…. ¡¡ Suerte !!

Geometría analítica: la recta en el plano

rectasSe conoce como Geometría Analítica al estudio de ciertas líneas y figuras geométricas aplicando técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas.

Lo novedoso de la geometría analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x, y) = 0, donde f representa una función u otro tipo de expresión matemática.

La idea que llevó a la geometría analítica fue: a cada punto en un plano le corresponde un par ordenado de números y a cada par ordenado de números le corresponde un punto en un plano.

Fue inventada por René Descartes y por Pierre Fermat, a principios del siglo XVII, y relaciona la matemática y el álgebra con la geometría.

Además, Descartes y Fermat observaron, y esto es crucial, que las ecuaciones algebraicas corresponden con figuras geométricas. Eso significa que las líneas y ciertas figuras geométricas se pueden expresar como ecuaciones y, a su vez, las ecuaciones pueden graficarse como líneas o figuras geométricas.

En particular, las rectas pueden expresarse como ecuaciones polinómicas de primer grado y las circunferencias y el resto de cónicas como ecuaciones polinómicas de segundo grado. Las rectas y los vectores están relacionados.

Por lo expresado anteriormente, podemos aventurar una definición más sencilla para la geometría analítica:

Rama de la geometría en que las líneas rectas, las curvas y las figuras geométricas se representan mediante expresiones algebraicas y numéricas usando un conjunto de ejes y coordenadas.

importante_2

pdf_boton_p

recomendado

web

esquema

video-icon

Geometría de la Recta en el plano

Potenciación y Radicación de números complejos (forma polar)

radicacion_complejosYa hemos dedicado un post anterior a los números complejos pero aquí puedes ampliar tus conocimientos sobre las operaciones en forma polar. En especial la potenciación (Fórmula de Moivre) y la radicación.

+ INFO (POTENCIACIÓN y RADICACIÓN de NÚMEROS COMPLEJOS)

web