Las Matemáticas y Napoleón

Napoleon

Teorema de Napoleón

“Si tomamos cualquier triángulo y sobre cada uno de sus lados levantamos un triángulo equilátero, uniendo los centros geométricos de estos tres triángulos equiláteros nos sale un nuevo triángulo que también es equilátero

No es frecuente encontrar políticos interesados por las ciencias y menos por las matemáticas. Uno de estos casos es Napoleón Bonaparte, quien desde pequeño tuvo interés por esta ciencia y a lo largo de su vida estuvo ligado a numerosos matemáticos de la época: Laplace, Fourier, NapoleonLagrange, Mascheroni y Monge, para después crear un sistema educativo donde las ciencias fueran aplicadas en beneficio del Estado. Logró destacar en la academia militar y convertirse en oficial de artillería, en que las matemáticas tienen un papel fundamental en el cálculo de las trayectorias y la colocación de los cañones.
Con Gaspard Monge tuvo una especial relación en la campaña de Egipto y era fácil verlos discutir, junto al químico Claude Berthollet sobre química, matematicas y religión. Existen dos problemas atribuidos al emperador, aunque no está claro si  los demostró o simplemente los propuso.  Presentamos el más conocido de ellos conocido como Teorema de Napoleón.

El teorema de Napoleón. Tres miradas

$\,\bigtriangleup ABC\,$Sea un triángulo cualquiera. Si se construyen exteriormente los triángulos equiláteros $\,\bigtriangleup ABC'\,$, $\,\bigtriangleup BCA'\,$ y $\,\bigtriangleup CAB'\,$, los centros de estos triángulos equiláteros determinan un nuevo triángulo equilátero.

Sean $\,M,N,P\,$ los centros de los triángulos equiláteros.

Triangulo_Napoleon_1

Además, la diferencia de las áreas del triángulo de Napoleón exterior $\,\bigtriangleup MNP\,$ y del triángulo de Napoleón interior $\,\bigtriangleup STU\,$ de un triángulo $\,\bigtriangleup ABC\,$ es igual al área del $\,\bigtriangleup ABC\,$.  Pulsa para ver demostración sobre las áreas.

Triangulo_Napoleon_2

Haz click aquí para ver una explicación intuitiva del Teorema de Napoleón mediante un applet de Geogebra

El teorema de Napoleón: leyenda y verdad

Napoleón Bonaparte se interesó desde pequeño por las Matemáticas. Eran de las pocas partes de sus estudios que le gustaban. A los diez años ingresó en la escuela militar francesa de Brienne-le-Château, y sacó notas destacadas en matemáticas y geografía. Después de graduarse a los catorce años (1784), fue admitido en la Ècole Royale Militaire de París, en la que estudió artillería y se graduó al año siguiente, 1785. Fue comisionado como teniente segundo de artillería y tomó su cargo en 1786 con dieciséis años.

Una de las principales características de la estrategia usada por Napoleón para ganar sus batallas fue el perfecto uso de la artillería. Era un genio colocando convenientemente los cañones en el campo de batalla y bombardeando con ellos las zonas que le parecían oportunas. Está claro que sacó el máximo provecho de sus estudios de artillero en las academias militares francesas, y para ello se basó enormemente en su conocimiento de las matemáticas.

Complicados y elaborados cálculos matemáticos han estado detrás de muchas batallas famosas, especialmente en los últimos siglos. Utilizar correctamente la artillería, desarrollar armas cada vez más potentes y eficaces, toda la tecnología que hay detrás de los tanques, aviones, cohetes, etc., y por supuesto la codificación y descodificación de mensajes secretos, como el caso de la máquina Enigma que los nazis usaron durante la Segunda Guerra Mundial y que los aliados lograron descifrar, con la consiguiente ventaja obtenida para ganar la guerra… son sólo algunos de los aspectos que las matemáticas han tratado en el campo bélico.

panoramica_napoleon

Pero no todo podía ser tan perfecto. En realidad el teorema de Napoleón no es de Napoleón, sino del citado Lorenzo Mascheroni, que según la historia es quien lo enunció y lo demostró. La razón por la que ha pasado a la historia con esta atribución parece ser que es la gran afición de Napoleón por las matemáticas y su gran amistad con Mascheroni (llegó a dedicar a Napoleón su obra “Geometria del compasso”), que le llevaron a estudiar sus libros y a popularizar sus resultados con tanto éxito que, incomprensiblemente, en algún momento se atribuyó este teorema a Napoleón.

Hoy en día todavía sigue habiendo gente que piensa que realmente fue Napoleón el responsable de este teorema, pero la opinión generalizada de los expertos es que, aunque la demostración no es demasiado complicada, el emperador no tenía conocimientos matemáticos suficientes para realizar la pertinente demostración. Lo que no se le puede negar a Napoleón es su preocupación por la ciencia y la educación (por ejemplo, instituyó la educación superior). Bien haría más de uno de los que nos gobierna en tomar ejemplo de Napoleón en lo que a estos temas se refiere…

video-icon

 

Anuncios

Los comentarios están cerrados.

A %d blogueros les gusta esto: